
PHYS 705: Classical Mechanics
Kepler Problem: Geometry of 
Kepler Orbits
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Focus-Directrix Formulation

In the following, we will study the geometry of the Kepler orbits 

 by considering the locus of points described by the Focus-

Directrix formulation.

- Pick a focus

PF PD

focus

directrix

d
- Pick a directrix – a vertical line a 

distance d away

- Then, consider the set of points 

{P}  that satisfy,

PD

PF

PF = distance from P to focus

P

PD = distance from P to directrix
ecce is ntr the icity
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Then, the condition                       gives, 

Focus-Directrix Formulation

Now, express this in polar coordinate with the focus as the origin:

PF PD

PF = r

PD = d – r cos q

focus

directix

cosd r qr

P

qO

 cosr d r q 

Solving for r, we have, 

cos

1 cos

r d r

d
r

  q

 q

 




Comparing with our previous Kepler orbit eq, 

1 cos
r


 q




 They are the same with 

d or d    
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The directrix is at

(Note: We have            for physical orbits.)

Focus-Directrix Formulation: Hyperbola

Recall the physical parameters for the orbit:

0 

0 1E   Case 1: 

d
 


 

1 cos 1 cos

d d
r


 q  q

 
 

2

2

2
1

El

mk
  

2l

mk
 

We have,

 Since                             , the denominator can be 

zero for some angle qmax < p  r can increase 

without bound @  This is a hyperbola !

1, 1 1  
, 0d   Note:

hyperbola 
line at focus

directrix

d

r

P

O 

maxq

maxq
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The directix is at

Focus-Directrix Formulation: Parabola

0 1E   Case 2: 

d
 


 

1 cos 1 cos

d d
r

 q q
 

 
Again, we have,

 Once again, the denominator can be zero 

at qmax =     p  r can increase without 

bound at @          This is a parabola !


p

2

2

2
1

El

mk
  

directrix

d 

r

P

O

5



Focus-Directrix Formulation: Closed Orbit

0E Case 3: There are three different sub-cases here.

No orbits !

case 3a: 
2

22

mk
E

l
   is imaginary r

E

'V2

2

2
1

El
recall

mk
  

case 3b: 
2

22

mk
E

l
  0 

E

'V

r
0r

2

0 1 cos

l
r

mk

 
 q

  


A circular orbit
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Focus-Directrix Formulation: Circular Orbit

For circular orbits, we can combine the equations for E and r0 into one 

relation:
2

22

mk
E

l
 

2

0

l
r

mk
+

02

k
E

r
 

We can also get this from the Virial Theorem:

0 0

1 1

2 2 2

k k
T V

r r

 
      

 

0 0 02 2

k k k
E T V T V

r r r
       

(at circular orbit            )0r r
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The directrix is at                       as indicated 

Focus-Directrix Formulation: Ellipse

case 3c: 

d
 


 

1 cos

d
r

 q



Again, we have,

2

2
0

2

mk
E

l
   0 1 

 Since                                    , the 

denominator cannot be zero and r is 

bounded.

0 1, 1 1   

An ellipse

directrix

d

r

P

O 

O is at one of the focii
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2

2
1

El
recall

mk
  



Some Common Terminology

- Pericenter: the point of closest approach of mass 2 

wrt mass 1

 Perigee refers to orbits around the earth

 Perihelion refers to orbits around the sun 1m

2m

pericenterapocenter

(with m1 fixed in space at 
one of the foci)

- Apocenter: the point of farthest excursion of 

mass 2 wrt mass 1

 Apogee refers to orbits around the earth

 aphelion refers to orbits around the sun
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Perihelion and aphelion of Planets in Solar System

Inner Planets Outer Planets
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O

a

b

perihelion   largestvq

Focus-Directrix Formulation: Ellipse

Now, we are going to look at the elliptic case                     closer: 

- The origin is with m1 fixed in space at one 

of the foci of the ellipse

 0 1 
(trying to relate geometry to physical parameters)

min
0

max

1 cos 1 1

1 cos 1 1

d d
r

d d
r

q

q p

  
 q  

  
 q  





  
  

  
  

maxr

minr

- The extremal distances of the reduced mass 

(or m2) away from O (or m1) are given by:

aphelion   smallestvq
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Focus-Directrix Formulation: Ellipse

max min 1

2 2 1 1

1

r r
a

 
 

 

       




1   
  22 12 1

a



 


O

a

maxr

b minr

- The semi-major axis a:

Now, putting in the physical constants, we have,
2

2 2

2

2 2

2

1

1 2
1 1

2 2

l
a

mk El
mk

l mk k

mk El E




 
  

  
 

 
    

 

Thus, the semi-major axis 

depends on E and k only !

2

k
a

E
 
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Focus-Directrix Formulation: Ellipse

2
2

2

1

2 2

l k
E mr

mr r
  

Goldstein does this differently:

At the apsides,          , so

2

k
a

E
 

Start with the energy equation:

0r 
2

2
0

2

l k
E

mr r
   (@ apsides)

Write it as a quadratic equation in r: 
2

2 0
2

k l
r r

E mE
   (this is an equation for the apsides)

Calling the two solutions for the apsides as:                , we can write:

   2
1 2 1 2 0r r r r r r   

1 2 and r r

Comparing the two eqs, one immediately gets:

 1 21 2 2
2

a r r

k k
r r a

E E      

Recall

so

0E 
0a 
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Focus-Directrix Formulation: Ellipse

Side Notes: 

Eccentricity can be expressed in terms of a: 

2

k
a

E
  agrees with                      in the limit for circular orbits. 

The fact that a is a function of E only is an important assumption in the 

Bohr’s model for the H-atom.

substitute
2

k
E

a
 

0 2

k
r

E
 





2

2

2
Recall 1 ,

El

mk
  

2

2

2

1
2

1
2

l k l

k km a ma
   


   



or  2 21l mk a   

(note: only true for 
ellipses and circles)
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Focus-Directrix Formulation: Ellipse

Side Notes: The two focii are located at c a  

max min

2

r r
c




From previous page, we have 

a

cc

maxr minr

To show, start with: 

Substituting                 in, we have,max min,r r

max min
2

1

2 2 1 1 1

r r
c

  
  

         

21
a







This gives our result: 21
c a

 


 

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Focus-Directrix Formulation: Ellipse

Side Notes: 

The semi-minor axis b for an ellipse can be expressed as 21b a  

Recall that if one draws a line from 

one focus to any point p on the 

ellipse and back to the other focus, 

the length is fixed so that

a
b

aa

p2L a (blue line)

But, we can also calculate it as,

ab

aa

p

 222 2L a b a  

21b a  
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Focus-Directrix Formulation: Summary

Summary on conic sections for the Kepler orbits: 

2

2

1 0

1 0

0 1 0

0
2

E hyperbola

E parabola

E ellipse

mk
E circle

l








 
 
  

  

2

2

2
1

El

mk
  

2l

mk
 

1 cos
r


 q




2

k
E

a
 
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Focus-Directrix Formulation: Summary

18

Kepler orbits with different energies                    but with the same angular 

momentum 

 E 

 l 



Focus-Directrix Formulation: Summary

19

Recall that                   with              d  

l  E 

So, d being the same  for diff E 

means      must also be different.l

In this picture, the directrix is fixed at 

one location so that d is the SAME for 

all orbits. 

But, and         are different. 

A typical family of conic sections



Kepler’s 3rd Law: Period of an Elliptical Orbit

2l mr q 

Recall that                         and r dq
rdq

21

2

dA
r

dt
q 21

2
dA r dq

Combining this with the angular momentum equation:

2

22 2

dA r l l

dt mr m
   
 

2m
dt dA

l


Integrating this dt over one round trip around the ellipse gives the period t :

0

2 2 2m m m
dt dA A ab

l l l

t

t p   
 

Now, plug in our previous results for the semi-major and semi-minor axes:

 22 2
1

m m
ab a a

l l
t p p   
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Kepler’s 3rd Law: Period of an Elliptical Orbit

Square both sides, we have:

 
2

2 2 4 2
2

4
1

m
a

l
t p  

   
2 2

2 2Recall 1  and 1
l l

a a
mk mk

        

2 2 2
2 2 3 2 3

2

4 4m l m
a a

l mk k

pt p t
 

  
 

(Note: Recall that m is the reduced mass m here and not m1,2 so that Kepler 

original statement for orbits of planets around the sun is only an 

approximation which is valid for                                                     and

so the proportionality                                     is 

approximately independent of       .

 Sun Sunm m m m mm     

This is Kepler’s 3rd Law

1Sun Sunk m Gm m Gmm   

21

2 24 4 Sunk Gmp m p

m



Motion in Time: Eccentric Anomaly

Overview on how to analytically solve for the position of an elliptic orbit as a 

function of time:  (can also be done for hyperbolic/parabolic orbits – hw)

Recall from our EOM derivations, we  get the following from E conservation:

(with the advent of computers, numerical methods replace this as the norm)

2

2

2
( )

2

l
r E V r

m mr

 
   

 


Inverting r and t, we get:

0

2

2

2
2

r

r

k l
t dr E

m r mr

 
   

 





( )
k

V r
r

 
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Motion in Time: True & Eccentric Anomaly

Our plan is to rewrite the equation in terms of

defined by: (basically, a change of variable              ) 

eccentric anomaly 

 1 cosr a    r 

Before we continue onto the EOM, let get more familiar with this 

Recall that we have our Kepler orbit equation in polar coordinate in the 

reduced mass frame:

1 cos
r


 q




Historically, q is called the true anomaly and it can be shown that

1
tan tan

2 1 2

q  


         

As we will see,  this can simplify the (analytical) integration for the EOM.

(choosing q ‘ = 0 at perihelion)
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Motion in Time: True & Eccentric Anomaly

To derive this relation, we equate the two expressions for r:

 1 cos
1 cos

a
 

 q
 


Recall for an ellipse, the semi-major axis can be written as:

21
a







  2
1 cos

1

 


 
 1 cos q

21
1 cos

1 cos

 q
 


 


21 1 1
cos 1

1 cos

q
   

 
    

1 2 1  cos

1 cos


 

 
   

cos
cos

1 cos

 q
 





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Motion in Time: True & Eccentric Anomaly

Now, evaluate the following two quantities, 

cos 1
1 cos 1

1 co

cos co

os

s

s 1 c

  q


 
  

 
   


 



cos 1
1 cos 1

1 co

cos co

os

s

s 1 c

  q


 
  

 
   


 



Then , we divide these two expressions:

LHS:
2 2 2

2
2 2 2

1 cos 1 cos 2 sin 2 2sin 2
tan 2

1 cos 1 cos 2 sin 2 2cos 2

q q q q q
q q q q

  
  

  

RHS:
   
   

21 1 cos 1
tan

1 1 cos 1 2

   
  

              

25

   1 1 cos1

1 cos 1

(1 s

c s

) co

o

  



  

 


 
 

  1 1 cos1

1 cos 1

(1 s

c s

) co

o

  



  

 


 
 



Motion in Time: True & Eccentric Anomaly

Putting LHS = RHS and taking the square root, we then have,

2 21 1
tan tan tan tan

2 1 2 2 1 2
or

q   q  
 

                              

Starting at perihelion                                , 0 0q    min 1r a    

Reaching aphelion                                , q p  p   max 1r a    

Going back to perihelion                                , 2 2q p  p   min 1r a    

Going through one cycle around the orbit, we have these relations:

26



True & Eccentric Anomaly: Geometry

qr

The true and eccentric anomaly are related geometrically as follows:


OC

m

orbit ellipse

bounding circle

line thru (reduced mass)m

perihelionaphelion

(O is  at one of the focii of the orbit ellipse)

(C is the center of bounding circle)

27



Motion in Time: Eccentric Anomaly

Ok. Now, coming back to the time evolution of the orbit:

Substituting the relations (on the right) into 

the denominators of the above eq, we have:

0

2

2

2
2

r

r

k l
t dr E

m r mr

 
   

 





 
2

2, 1
2

k l
E a

a mk
     

 
1/22

2
2 2

2 2
1

2 2 2

k l k k k
E a

m r mr m a r r


                     

  1/2
22 11 2

2 2

ak r
r

r m a

 
    
  
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Motion in Time: Eccentric Anomaly

Putting this back into the time integral, we have,

(this is Eq. 3.69 in Goldstein)
 

0

22 1

2 22

r

r

am r
t rdr r

ak


  





Now, we substitute the eccentric anomaly into above:

 By convention, we pick starting point r0 at perihelion  0 0 q 

Then, limit of integration becomes:
o

r

r o

dr d


 
 Now, we need to do some more algebra to transform the integrant:

First, the change of variable                                    gives,                        1 cosr a   

sindr a d   and  2 1 cos sinrdr a d     
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Motion in Time: Eccentric Anomaly

 Now, we need to transform the square-root term:

     

    

  

2 2
1/22 2 2

1/22 2 2

1/22 2 2

2

2

2 1

2

cos

1 cos

2

1 cos cos

2

1 cos

1 c 1

1

os 2

a

a

a a

a

a a a

a

a a

a

   





  

   





   
 
  

    
  

  

    
  

 

 



30

 22 1

2 2

ar
r

a


       1/2

2 22 11 cos
1 cos

2 2

aa
a

a

 
 

 
    
  



0

2
2

2 2

r

r

am rdr m
t

k k a


 




 1 cos ' sin '   'd
 sin '

 

0

3

0

1 cos ' '
ma

t d
k





   







Motion in Time: Eccentric Anomaly

Now, putting all the pieces back together, we have,

2 1a


 2 2 2cos a  
1/2

2 2

2

a

a

 
 
 
 

 
1/2

2 2

2

1 cos
2

sin sin
2 2

a

a a

 

   

    

   2 1 cos sinrdr a d     

Recall,
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Motion in Time: Eccentric Anomaly

Carry through the integration, we have,

i.e., taking  from 0 to 2p, we have:

Again, we have Kepler’s 3rd law:

2
2 34 m

a
k

pt 

   
3 3

0

1 cos ' ' sin
ma ma

t d
k k



        
(Note the dramatic 

simplification using     )

Integrating this over ONE period of the elliptic orbit, 
3

2
ma

k
t p
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2
t

M p
t



Motion in Time: Eccentric Anomaly

Defining the mean anomaly M as:                       (M is observable) 

We arrive at the Kepler’s Equation:

2
2M t

t
p p 

k
24p 3ma

3ma

k
 sin  

Standard (non-numeric) procedure in solving celestial orbit equation:

1. Solve Kepler’s equation   (t)  [transcendental]

2. Use the                transformation to get back to the true anomaly q t .

sinM    

 q
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• Orbits are heliocentric  (orbits with the Sun at the center of force)

e.g.  Orbit near Earth  Orbit near Mars

• Orbits  are on the same orbital plane of the Sun

•

• Ignoring gravitational effects from other Planets

• Thrusts  (two) from rockets change only eccentricity and energy of 

an orbit BUT not the direction of angular momentum

sun satelliteM m

Hohmann Transfer

The most economical method (minimum total energy expenditure) of 

changing among circular orbits in a Kepler system such as the Solar system.

Simplifying assumptions:
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er

mr

newv

mvHohmann Transfer: Earth to Mars

1. Start from Earth’s “circular” orbit

2. Kick to go on transfer orbit (elliptic –

thick line) with new speed

3. Kick to slow down when arrived at 

Mars “circular” orbit with speed

(Both E’s and M’s orbits are close to 

circular:                                                          )

newv

mv

0.0167, 0.0934Earth Mars  

Note: 1. Both kicks are done at points of tangency (@ perihelion and aphelion of the 

ellipse) so that transfer can be accomplished with speed-change only.

2. Both (speed) kicks won’t change the direction of L (stay on the same orbital plane).

3. Need to time operations so that Mars will actually be there at arrival.
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er

mr

newv

mv
Hohmann Transfer: Earth to Mars

Let calculate the required speed changes:

- For both circular and elliptic orbits,

2

k
E

a
  (a semi-major axis)

- On Earth’s orbit, we have

2 e

k
E

r
 

- Recall also,                                 21

2 e
e

k
E mv

r
 

- Combining with above gives, e
e

k
v

mr


This is the Earth’s orbital speed and 

the satellite will start with it as well.
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Hohmann Transfer: Earth to Mars

Now, think of the position as the pericenter

of the elliptic transfer orbit:

- The ellipse has its semi-major axis:

2
e mr r

a




- So, for the satellite to be on this orbit, it 

needs to have energy:

21

2 new
e m e

k k
E mv

r r r
   



er

mr

newv

mv

- Solve for         , 

2 2 1 1 2 m
new

e e m e e m

rk k
v

m r r r mr r r

   
         

newv

2 m
new

e e m

rk
v

mr r r

 
   
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Hohmann Transfer: Earth to Mars

- So, to get the satellite onto the elliptic 

transfer orbit, we need to give a “kick” to 

speed it up (no change in direction) 

er

mr

newv

mv

- When satellite arrives at the aphelion of the 

transfer orbit (Mars’ circular orbit), thruster needs 

to fire to slow down to get onto Mars’s circular orbit,

1 new earthv v v  

21

2 2 m
m m

k k
E mv

r r
    (on Mars’s orbit) new m

m

k
v v

mr
 

1

2 m

e e m e

rk k
v

mr r r mr

 
    
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Slingshot Effect (qualitative discussion)

Let consider a satellite swinging by a Planet (hyperbolic orbit) in a frame co-

moving with Planet M.

Note: the hyperbolic orbit is symmetric with respect 

to the apside magnitude of v doesn’t change, 

(before and after) only its direction.

iv fviv

fv

v

M
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Slingshot Effect (qualitative discussion)

Now, if we consider the same situation in a “stationary” inertial reference frame 

(fixed wrt the Sun) in which the Planet M is moving to the right.

is the velocity of the satellite 

in the “stationary” frame. 
iv

fv

iv

fv 'iv

Mv
M

'iv

' fv

Mv

is the velocity of the satellite 

in the “stationary” frame. 

' fv

Note that          has a larger magnitude than       

(with a boost in the direction of Planet M).

'iv' fv
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ISEE-3 Fly-by (1982-1985)

- ISEE-3 (International Sun-Earth Explorer 3) was originally parked in an orbit at 

the L1 Lagrange point to observe the Sun and the Earth.

- 1982: NASA decided to reprogram it so that it will go to explore the Giacobini-

Zinner comet scheduled to visit the inner Planets in September of 1985.

- Design an orbit to get it from its parked orbit to the coming comet: cheaper than 

to design, build, and lunch a new satellite.

Some details: First burn    

A total of 37 burns

Two close trips back to Earth and five flybys of the moon.

One pass within 75 miles of the Luna surface

Resulted in 20 min trip through the comet tail on 9/11/85.

10v mph 
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ISEE-3 Fly-by (1982-1985)

(Lagrange 
Point)

42


